Unit 1: Introduction to Computer Networks

1. What is a computer network?

 A computer network is a collection of interconnected devices that can communicate and share resources.

2. List the characteristics of computer networks.

• Reliability, scalability, speed, security, and cost-effectiveness.

3. What are the primary applications of computer networks?

 Resource sharing, data communication, remote access, collaborative work, and multimedia transmission.

4. Define PAN, LAN, MAN, and WAN.

PAN (Personal Area Network), LAN (Local Area Network), MAN (Metropolitan Area Network), WAN (Wide Area Network).

5. What is internetworking?

• The practice of connecting multiple computer networks through the use of gateways or routers.

6. What are the main types of network topologies?

• Star, ring, bus, mesh, and hybrid topologies.

7. Describe a star topology.

• A network topology where each device is connected to a central hub or switch.

8. What is the difference between a LAN and a WAN?

 $\circ~$ A LAN covers a small geographic area, while a WAN covers a large

geographic area, often connecting multiple LANs.

9. What are the advantages of a bus topology?

• Easy to install and extend, cost-effective.

10. What are the disadvantages of a ring topology?

• A single point of failure can disrupt the entire network, and adding or removing devices can be difficult.

11. Explain the concept of network scalability.

• The ability of a network to grow and manage increased demand by adding more resources without sacrificing performance.

12. What is a mesh topology, and where is it used?

 A topology where each device is connected to every other device, used in high-reliability environments.

13. Define a hybrid topology.

• A combination of two or more different types of network topologies.

14. What is a PAN and its typical use case?

 A Personal Area Network, typically used for short-range communication like Bluetooth.

15. How does a MAN differ from a LAN?

• A MAN covers a larger geographic area than a LAN and is typically used to connect multiple LANs within a city.

16. What role does a router play in a WAN?

• Routers connect different LANs within a WAN and manage data traffic

between them.

17. What are the benefits of a star topology?

• Easy to install and manage, failure of one device doesn't affect the others.

18. What is the primary disadvantage of a bus topology?

 \circ $\;$ If the main cable fails, the entire network goes down.

19. What are network nodes?

 Devices or data points on a larger network, such as computers, printers, or servers.

20. Explain the term 'network architecture.'

• The design and structure of a computer network, including its physical and logical layout.

Unit 2: Data Communication

- 1. What are the components of data communication?
 - Sender, receiver, message, medium, and protocol.
- 2. What are the key characteristics of data communication?
 - Delivery, accuracy, timeliness, and jitter.
- 3. What are transmission impairments in data communication?
 - Attenuation, noise, and distortion.

4. What are the different transmission modes?

• Simplex, half-duplex, and full-duplex.

5. Define a communication protocol.

• A set of rules governing data communication between devices.

6. What is the function of a data communication protocol?

• To ensure reliable and accurate data transfer.

7. What is simplex transmission mode?

• A one-way communication mode where data flows in a single direction.

8. Explain half-duplex transmission mode.

- Data transmission where both sender and receiver can transmit, but not simultaneously.
- 9. What is full-duplex transmission mode?

• Simultaneous data transmission in both directions.

10. What causes attenuation in data communication?

• The weakening of a signal over distance.

11. How can noise affect data communication?

• It can introduce errors in the data being transmitted.

12. What is distortion in data communication?

• Changes in the signal form or frequency during transmission.

13. What is a data link layer protocol?

• A protocol that handles communication between adjacent network nodes.

14. What are the primary functions of a protocol?

• Error detection, error correction, flow control, and data encapsulation.

15. What is protocol layering?

 Organizing protocols in a hierarchical fashion, each layer providing services to the layer above.

16. What is flow control in data communication?

• Techniques to control the rate of data transmission between sender and receiver.

17. What are error detection techniques?

• Parity checks, checksums, and cyclic redundancy checks (CRC).

18. What is the significance of data encapsulation?

 It allows different layers to add their headers and trailers to the data being transmitted.

19. What is the purpose of the transmission medium?

• To carry the signal from the sender to the receiver.

20. What are examples of wired transmission media?

• Twisted pair cables, coaxial cables, and fiber optic cables.

Unit 3: Network Models

1. What is a layered network architecture?

 A design framework that divides the network communication process into distinct layers.

2. What are the benefits of a layered architecture?

 Simplifies troubleshooting, standardizes network components, and allows interoperability.

3. What is the OSI reference model?

• The Open Systems Interconnection model, a seven-layer framework for network communication.

4. List the seven layers of the OSI model.

• Physical, Data Link, Network, Transport, Session, Presentation, Application.

5. What is the TCP/IP protocol suite?

 A set of protocols used for the Internet and similar networks, organized into four layers.

6. What are the four layers of the TCP/IP model?

• Network Interface, Internet, Transport, Application.

7. What is the primary function of the Physical layer in OSI?

• To transmit raw bit streams over a physical medium.

8. What does the Data Link layer do in the OSI model?

• Provides node-to-node data transfer and error detection/correction.

9. What is the function of the Network layer in OSI?

• Handles routing and forwarding of data packets.

10. What is the role of the Transport layer in OSI?

• Provides reliable data transfer services to the upper layers.

11. What does the Session layer do in the OSI model?

• Manages sessions and controls dialogues between applications.

12. What is the function of the Presentation layer in OSI?

• Translates, encrypts, and compresses data for the Application layer.

13. What services does the Application layer provide in OSI?

• Network services directly to end-users.

14. How does the Internet layer in TCP/IP function?

• Manages addressing, packaging, and routing of data packets.

15. What protocols operate at the Transport layer of TCP/IP?

• TCP (Transmission Control Protocol) and UDP (User Datagram Protocol).

16. What is the role of the Network Interface layer in TCP/IP?

• Handles hardware addressing and physical transmission of data.

17. How do the OSI and TCP/IP models differ?

• OSI has seven layers, while TCP/IP has four layers. OSI is a theoretical model, and TCP/IP is more practical.

18. What are the benefits of the TCP/IP model?

• Flexibility, interoperability, and scalability.

19. What is encapsulation in network models?

• The process of adding headers and trailers to data as it moves down the layers.

20. What is the significance of the Application layer in TCP/IP?

 \circ It provides network services directly to user applications.

Unit 4: Physical Layer

1. What are the services provided by the Physical layer?

 Bit-by-bit data transmission, physical connection setup, maintenance, and deactivation.

2. What is a transmission medium?

• The physical path between the transmitter and receiver in a communication system.

3. List examples of wired transmission media.

• Twisted pair cables, coaxial cables, and fiber optic cables.

4. What are wireless transmission media?

• Radio waves, microwaves, and infrared signals.

5. What is the function of networking devices in the Physical layer?

• To facilitate data transmission over physical media.

6. What is the purpose of a modem?

 \circ To modulate and demodulate signals for transmission over telephone lines.

7. How do twisted pair cables transmit data?

 By using pairs of wires twisted together to reduce electromagnetic interference.

8. What are the advantages of fiber optic cables?

High bandwidth, low attenuation, and immunity to electromagnetic interference.

9. What is the difference between baseband and broadband transmission?

 Baseband uses a single signal, while broadband uses multiple signals over different frequencies.

10. What is a repeater, and why is it used?

 A device that regenerates and amplifies signals to extend transmission distance.

11. What is a hub in networking?

• A central device that connects multiple devices in a LAN and broadcasts data to all connected devices.

12. What is the function of a switch?

• To connect devices in a network and use MAC addresses to forward data to the correct device.

13. How does a router differ from a switch?

• A router connects different networks and forwards data based on IP addresses, while a switch operates within a single network using MAC addresses.

14. What is the purpose of an access point?

• To provide wireless connectivity to devices within a network.

15. What are the benefits of using wireless transmission media?

• Flexibility, mobility, and ease of installation.

16. What are the limitations of wireless transmission media?

• Susceptibility to interference, limited range, and potential security issues.

17. What is signal attenuation?

• The reduction in signal strength as it travels through a transmission medium.

18. What is the significance of signal-to-noise ratio (SNR)?

 It measures the quality of a signal in relation to background noise, impacting data transmission quality.

19. What is multiplexing in data communication?

• A technique that combines multiple signals for transmission over a single medium.

20. What are the types of multiplexing?

• Frequency Division Multiplexing (FDM), Time Division Multiplexing

(TDM), and Code Division Multiplexing (CDM).

Unit 5: Data Link Layer - Error Detection and Correction

1. What is error detection in data communication?

• Techniques to identify errors in transmitted data.

2. What is error correction in data communication?

• Techniques to correct errors without retransmission.

3. What is a parity bit?

• An additional bit added to data to make the number of 1s either even (even parity) or odd (odd parity).

4. Explain one-dimensional parity.

• A parity bit is added to each byte of data to ensure the total number of 1s is even or odd.

5. What is two-dimensional parity?

• Parity bits are added to both rows and columns of data to detect and correct errors.

6. How does the Hamming code work?

 By adding redundant bits to data, it allows error detection and correction of single-bit errors.

7. What is a cyclic redundancy check (CRC)?

• A method that uses polynomial division to detect errors in data.

8. What is the purpose of a checksum?

• To verify data integrity by calculating a value based on the data content.

9. How does character stuffing work?

 Special characters are added to data to differentiate between data and control information.

10. What is bit stuffing?

 Inserting non-information bits into data to prevent misinterpretation of data patterns.

11. What is the difference between error detection and error correction?

• Error detection identifies errors, while error correction fixes them.

12. What are the benefits of using CRC for error detection?

• High accuracy and efficiency in detecting errors.

13. What is the limitation of parity checks?

• It can only detect odd numbers of errors, not even numbers.

14. What is the advantage of using Hamming code?

• It can detect and correct single-bit errors.

15. How does two-dimensional parity improve error detection?

 \circ It increases the likelihood of detecting multiple-bit errors.

16. What is the significance of error detection and correction in data

communication?

• Ensures reliable data transfer and minimizes data corruption.

17. What is the purpose of redundancy in error correction?

 \circ $\,$ To add extra information that can be used to detect and correct errors.

18. How does CRC differ from checksum?

• CRC uses polynomial division, while checksum uses arithmetic summation.

19. What is the role of the Data Link layer in error control?

• To detect and correct errors in data frames transmitted between network nodes.

20. What are the common methods of error detection and correction?

• Parity checks, checksums, CRC, and Hamming code.

Unit 6: Data Link Layer - Flow and Error Control Protocols

1. What is flow control in data communication?

• Techniques to manage the rate of data transmission between sender and receiver.

2. What is the simplest protocol in data communication?

• A protocol that transmits data without any flow or error control mechanisms.

3. Describe the stop-and-wait protocol.

• The sender transmits a frame and waits for an acknowledgment before sending the next frame.

4. What is stop-and-wait ARQ?

• An error control protocol where the sender retransmits a frame if an acknowledgment is not received within a certain time.

5. Explain go-back-n ARQ.

 A protocol where the sender can send multiple frames before needing an acknowledgment, but must retransmit all frames from a lost or erroneous frame.

6. What is selective repeat ARQ?

- A protocol where the sender retransmits only the erroneous frames, rather than all frames after the error.
- 7. What is the difference between noiseless and noisy channels?

 Noiseless channels do not have errors during transmission, while noisy channels do.

8. How does stop-and-wait protocol handle flow control?

• By ensuring the sender waits for an acknowledgment before sending the next frame.

9. What are the disadvantages of the simplest protocol?

• Inefficiency and lack of error control.

10. How does go-back-n ARQ improve efficiency?

• By allowing multiple frames to be sent before waiting for an acknowledgment.

11. What is the primary advantage of selective repeat ARQ?

 \circ $\;$ It minimizes retransmissions by only resending erroneous frames.

12. What is a frame in data communication?

• A data packet at the Data Link layer.

13. What is the role of acknowledgment in ARQ protocols?

 \circ $\,$ To inform the sender that the frame was received correctly.

14. How does stop-and-wait ARQ handle error control?

• By retransmitting frames if no acknowledgment is received.

15. What is the window size in go-back-n ARQ?

• The number of frames the sender can transmit without waiting for an acknowledgment.

16. What is the purpose of sequence numbers in ARQ protocols?

• To keep track of transmitted and received frames.

17. How does selective repeat ARQ handle flow control?

• By using a sliding window to manage the number of frames in transit.

18. What are the benefits of using ARQ protocols?

• Improved reliability and error handling.

19. What is the primary limitation of stop-and-wait protocol?

• Low efficiency due to waiting for acknowledgments after each frame.

20. How do flow and error control protocols contribute to data communication?

• They ensure reliable and efficient data transfer between sender and receiver.

Unit 7: Data Link Layer - Medium Access Control Protocols

1. What is pure ALOHA?

• A simple protocol where devices transmit whenever they have data, leading to potential collisions.

2. How does slotted ALOHA improve upon pure ALOHA?

• By dividing time into slots, reducing the chance of collisions.

3. What is persistent CSMA?

• A protocol where a device continuously senses the channel and transmits as soon as it becomes idle.

4. What is non-persistent CSMA?

• A protocol where a device senses the channel, and if it's busy, waits a random amount of time before trying again.

5. Explain CSMA/CD.

• Carrier Sense Multiple Access with Collision Detection, where devices detect collisions and retransmit after a random backoff time.

6. What is CSMA/CA?

- Carrier Sense Multiple Access with Collision Avoidance, used primarily in wireless networks to avoid collisions.
- 7. What is the primary difference between CSMA/CD and CSMA/CA?

 CSMA/CD detects and resolves collisions, while CSMA/CA tries to avoid collisions.

8. What are the advantages of slotted ALOHA?

• Higher efficiency and reduced collisions compared to pure ALOHA.

9. What is the main disadvantage of pure ALOHA?

• High collision probability, leading to low efficiency.

10. How does persistent CSMA handle collisions?

 By continuously sensing the channel and transmitting immediately after it becomes idle.

11. What are the benefits of non-persistent CSMA?

 \circ $\;$ Reduced chances of collisions and lower channel utilization.

12. How does CSMA/CD improve network efficiency?

• By detecting collisions and reducing the time wasted on retransmissions.

13. What is the purpose of the backoff algorithm in CSMA/CD?

 \circ To determine the random wait time before retransmitting after a collision.

14. How does CSMA/CA handle collision avoidance?

 By using techniques like Request to Send (RTS) and Clear to Send (CTS) to reserve the channel.

15. What is the role of the Data Link layer in medium access control?

 \circ $\,$ To manage how data frames are placed onto the physical medium.

16. What is the primary limitation of slotted ALOHA?

• Time synchronization is required for all devices.

17. How does non-persistent CSMA reduce collisions?

• By introducing random wait times before attempting to retransmit.

18. What are the applications of CSMA/CA?

• Primarily used in wireless networks, such as Wi-Fi.

19. What is the efficiency of pure ALOHA?

• Approximately 18.4%.

20. What is the efficiency of slotted ALOHA?

• Approximately 36.8%.

Unit 8: Network Layer - Logical Addressing

1. What is IPv4 addressing?

• A 32-bit address scheme used to identify devices on a network.

2. What is classful addressing?

An addressing method that divides the IP address space into five classes (A, B, C, D, E).

3. What is classless addressing?

 An addressing method that allows for more flexible allocation of IP addresses using CIDR (Classless Inter-Domain Routing).

4. What is subnetting?

• The process of dividing a network into smaller sub-networks to improve management and efficiency.

5. What is Network Address Translation (NAT)?

 A technique that allows multiple devices on a private network to share a single public IP address.

6. What is IPv6 addressing?

 $\circ~$ A 128-bit address scheme designed to replace IPv4, offering a larger address

space.

7. What is the Address Resolution Protocol (ARP)?

• A protocol used to map an IP address to a physical MAC address on a local network.

8. What is the Reverse Address Resolution Protocol (RARP)?

• A protocol used to map a physical MAC address to an IP address.

9. What are the benefits of IPv6 over IPv4?

 Larger address space, improved security features, and better support for mobile devices.

10. What is CIDR, and how does it work?

 Classless Inter-Domain Routing, a method for allocating IP addresses and routing that replaces the classful system.

11. How does NAT improve network security?

• By hiding internal IP addresses from external networks.

12. What is the purpose of subnet masks?

 \circ $\,$ To differentiate the network and host portions of an IP address.

13. What is the primary advantage of classless addressing?

 Greater flexibility in IP address allocation and more efficient use of the address space.

14. What are private IP addresses?

• IP addresses reserved for use within private networks, not routable on the public Internet.

15. How does ARP work?

 By broadcasting a request for the MAC address associated with a known IP address on the local network.

16. What is the significance of the loopback address in IPv4?

 \circ The address 127.0.0.1, used to test network interfaces on a local machine.

17. What is the difference between static and dynamic IP addressing?

 Static IP addresses are manually assigned, while dynamic IP addresses are assigned automatically by a DHCP server.

18. What is the role of the network layer in logical addressing?

• To provide unique addressing for devices on a network and facilitate routing.

19. What is the purpose of the IPv6 link-local address?

• To allow communication between devices on the same local network segment.

20. What are the three types of IPv6 addresses?

• Unicast, multicast, and anycast.

Unit 9: Network Layer – Routing

1. What is unicast routing?

• Routing that directs data from a single sender to a single receiver.

2. What are the characteristics of routing?

• Path selection, routing table maintenance, and forwarding decisions.

3. What are the main types of routing algorithms?

• Distance vector, link-state, and hybrid algorithms.

4. What is the difference between distance vector and link-state routing?

• Distance vector uses distance metrics to find the shortest path, while link-state uses a complete map of the network.

5. What is the purpose of routing tables?

 \circ $\,$ To store routes and forwarding information for data packets.

6. What is the primary advantage of link-state routing?

- Faster convergence and more accurate routing decisions.
- 7. What is the disadvantage of distance vector routing?

• Slower convergence and the possibility of routing loops.

8. What is broadcast routing?

 Routing that sends data from one sender to all possible receivers in the network.

9. What is multicast routing?

• Routing that directs data from one sender to multiple specified receivers.

10. What is the purpose of the routing algorithm?

 \circ To determine the best path for data to travel through the network.

11. How does the OSPF protocol work?

Open Shortest Path First (OSPF) uses link-state information to make routing decisions.

12. What is the RIP protocol?

• Routing Information Protocol, a distance vector routing protocol using hop count as a metric.

13. What are the benefits of using EIGRP?

 Enhanced Interior Gateway Routing Protocol offers fast convergence and scalability.

14. What is the significance of routing metrics?

 Metrics like hop count, bandwidth, and delay help determine the best path for data.

15. What is the difference between static and dynamic routing?

 Static routing uses manually configured routes, while dynamic routing uses algorithms to adjust routes automatically.

16. What is the role of the network layer in routing?

 \circ $\,$ $\,$ To determine the best path for data and forward packets accordingly.

17. What is a routing loop, and how can it be prevented?

• A routing loop occurs when data continuously circles through the network. It can be prevented using techniques like split horizon and hold-down timers.

18. What is the function of the BGP protocol?

 Border Gateway Protocol manages routing between different autonomous systems on the Internet.

19. How does multicast routing differ from broadcast routing?

 Multicast routing sends data to a specific group of receivers, while broadcast routing sends data to all receivers in the network.

20. What are the challenges of routing in Adhoc networks?

• Dynamic topology, limited bandwidth, and energy constraints.

Unit 10: Transport Layer - Protocols

1. What are the services provided by the transport layer?

 Connection establishment, data transfer, flow control, error control, and connection termination.

2. What is the difference between connection-oriented and connectionless services?

 Connection-oriented services establish a connection before data transfer (e.g., TCP), while connectionless services do not (e.g., UDP).

3. What is the process of connection establishment in the transport layer?

• The process of setting up a connection between sender and receiver, typically using a three-way handshake in TCP.

4. What is connection release in the transport layer?

- The process of terminating an established connection.
- 5. What is TCP?

• Transmission Control Protocol, a connection-oriented protocol that ensures reliable data transfer.

6. What is UDP?

• User Datagram Protocol, a connectionless protocol that provides fast but unreliable data transfer.

7. What is the three-way handshake in TCP?

• A process involving SYN, SYN-ACK, and ACK packets to establish a TCP connection.

8. What are the benefits of using TCP?

• Reliable data transfer, error detection and correction, and flow control.

9. What are the limitations of UDP?

• Lack of reliability, no error correction, and no flow control.

10. How does the transport layer ensure data integrity?

• By using checksums and acknowledgments to detect and correct errors.

11. What is flow control in TCP?

 Techniques like sliding window protocol to manage the rate of data transmission.

12. What is the purpose of the sliding window protocol?

 To allow multiple frames to be sent before needing an acknowledgment, improving efficiency.

13. What is the significance of port numbers in the transport layer?

 \circ $\;$ To identify specific processes or services on a device.

14. What is the role of the transport layer in end-to-end communication?

• To provide reliable data transfer between end devices.

15. How does TCP handle retransmissions?

• By using timeouts and sequence numbers to detect lost packets and retransmit them.

16. What is the difference between a socket and a port?

• A port is a communication endpoint, while a socket is an interface for sending and receiving data on a port.

17. What are the key features of TCP?

• Reliable data transfer, flow control, congestion control, and error detection.

18. What are the key features of UDP?

 Low overhead, fast transmission, and suitable for applications that do not require reliability.

19. How does the transport layer handle multiplexing and demultiplexing?

• By using port numbers to direct data to the correct application process.

20. What is the significance of the transport layer in the OSI and TCP/IP models?

• To provide end-to-end communication and ensure reliable data transfer between devices.

Unit 11: Transport Layer - Congestion Control and QoS

- 1. What are the general principles of congestion control?
 - Techniques to prevent and manage network congestion by regulating data transmission rates.

2. What is congestion avoidance?

• Methods to proactively prevent network congestion before it occurs.

3. What is congestion prevention?

 Policies and mechanisms to ensure network resources are used efficiently to avoid congestion.

4. What is Quality of Service (QoS)?

 Techniques to manage network traffic to ensure the performance of critical applications.

5. What are the types of network traffic?

• Real-time traffic, non-real-time traffic, and best-effort traffic.

6. What is traffic shaping?

• Techniques to control the

7. What is the purpose of traffic shaping in QoS?

• To control the flow of network traffic according to predefined rules and priorities.

8. Explain the leaky bucket algorithm.

• A traffic shaping algorithm that limits the rate at which data can be sent out of a network interface.

9. How does the token bucket algorithm work?

• Tokens are added to a bucket at a fixed rate, and only devices with tokens can transmit data.

10. What are the characteristics of real-time traffic?

 Requires low latency and jitter to maintain quality, such as voice and video streaming.

11. What is the difference between traffic shaping and traffic policing?

• Traffic shaping buffers excess traffic, while traffic policing drops excess traffic.

12. What is the role of QoS in network management?

 To prioritize traffic and allocate network resources to ensure the performance of critical applications.

13. What are the challenges of implementing QoS in networks?

• Compatibility issues, configuration complexity, and resource allocation.

14. How does the leaky bucket algorithm contribute to congestion control?

• By smoothing out bursts of traffic and controlling the rate of transmission.

15. What is the purpose of traffic prioritization in QoS?

• To ensure that critical applications receive preferential treatment over less important traffic.

16. What are the types of traffic shaping techniques?

• Token bucket, leaky bucket, and traffic shaping policies.

17. How does QoS impact network performance?

 It improves the reliability and predictability of network performance for different types of traffic.

18. What is the significance of jitter in real-time traffic?

 Jitter affects the quality of voice and video transmission by causing delays and variations in packet arrival times.

19. What are the benefits of implementing congestion control mechanisms?

• Improved network efficiency, reduced packet loss, and better user experience.

20. How does QoS support end-to-end communication in networks?

• By ensuring that traffic receives appropriate prioritization and resource allocation based on application requirements.

Unit 12: Application Layer - Services and Protocols

- 1. What are the services provided by the application layer?
 - Remote access, file transfer, email services, and web browsing.
- 2. What is remote login (TELNET)?

• A protocol that allows remote access to a host computer over a network.

3. What is the File Transfer Protocol (FTP)?

• A protocol used for transferring files between a client and a server over a network.

4. What is the Domain Name System (DNS)?

• A protocol that translates domain names into IP addresses.

5. What is the Simple Mail Transfer Protocol (SMTP)?

• A protocol used for sending email messages between servers.

6. What is the Post Office Protocol (POP)?

• A protocol used for retrieving email messages from a server to a client.

7. What is the Internet Message Access Protocol (IMAP)?

• A protocol used for accessing and managing email messages on a server.

8. How does TELNET facilitate remote access?

• By establishing a virtual terminal session between a client and a remote host.

9. What are the security concerns associated with TELNET?

• It transmits data in plain text, making it vulnerable to eavesdropping.

10. How does FTP ensure file transfer security?

 \circ $\;$ By supporting secure FTP (SFTP) and FTPS protocols that encrypt data $\;$

during transmission.

11. What is the role of DNS in web browsing?

 It translates domain names (e.g., <u>www.example.com</u>) into IP addresses to locate web servers.

12. How does SMTP facilitate email communication?

• By transferring outgoing email from a client to a server and between servers.

13. What is the purpose of POP in email retrieval?

 To download and manage email messages from a server to a local client device.

14. How does IMAP differ from POP?

 IMAP allows users to access and manage email messages directly on the server, while POP downloads messages to the client.

15. What are the benefits of using DNS caching?

• Faster domain name resolution and reduced network traffic.

16. What are the challenges of using FTP in a secure manner?

 Requires additional configuration for secure FTP protocols and potential firewall issues.

17. What is the role of application layer protocols in network communication?

• To define communication rules and formats for specific services and applications.

18. How does DNS load balancing improve web service availability?

• By distributing client requests across multiple servers based on IP address resolution.

19. What are the advantages of using IMAP over POP?

 Allows users to access and manage emails from multiple devices without downloading them.

20. What is the importance of secure email transmission using SMTP protocols?

• To prevent unauthorized access and ensure the confidentiality of email communications.

Unit 13: Internet and WWW

1. What are the basic principles of the Internet?

• Decentralized network architecture, packet switching, and global connectivity.

2. Explain the Hypertext Transfer Protocol (HTTP).

 A protocol used for transferring hypertext requests and information on the World Wide Web.

3. What is the World Wide Web (WWW)?

• A system of interlinked hypertext documents accessed via the Internet.

4. How does IPsec enhance security on the Internet?

• By providing authentication and encryption for IP packets.

5. What is a Virtual Private Network (VPN)?

• A secure network connection established over a public network like the Internet.

6. How does HTTP facilitate client-server communication on the web?

• By allowing clients to request web pages and servers to respond with content.

7. What are the challenges of maintaining data integrity on the Internet?

• Data interception, unauthorized access, and malware threats.

8. How does HTTPS differ from HTTP?

• HTTPS encrypts data transmitted between the client and server, providing secure communication.

9. What role does DNS play in web browsing?

• It translates domain names into IP addresses to locate web servers.

10. What are the benefits of using IPsec in VPNs?

• Enhanced security through encryption, authentication, and data integrity verification.

11. Explain the importance of IP addressing in Internet communication.

 IP addresses uniquely identify devices on the Internet and facilitate data routing.

12. What is the significance of VPN tunnels in secure communications?

• They create encrypted paths for data transmission over public networks.

13. How does DNS resolution affect web browsing performance?

• Fast DNS resolution results in quicker access to websites.

14. What are the security risks associated with HTTP connections?

• Data interception, eavesdropping, and man-in-the-middle attacks.

15. How does IPsec protect against network attacks?

 By authenticating and encrypting IP packets to ensure data confidentiality and integrity.

16. What is the role of IP addressing in VPN tunneling?

• To route encrypted data packets between VPN endpoints over the Internet.

17. What are the advantages of using HTTPS for secure web browsing?

• Protection against data tampering, privacy violations, and authentication risks.

18. How does DNS caching improve Internet performance?

• By storing recently accessed DNS information locally to reduce query response times.

19. What are the challenges of implementing IPsec in large-scale VPN deployments?

• Compatibility issues, configuration complexity, and performance overhead.

20. What is the impact of IPsec on VPN throughput and latency?

 IPsec encryption and decryption processes can affect VPN performance, requiring optimization.

Unit 14: Network Security

1. What are the primary goals of network security?

• Confidentiality, integrity, availability, and authenticity of data and resources.

2. Explain the principles of cryptography in network security.

 Encryption, decryption, and key management to secure data during transmission and storage.

3. How does message integrity ensure data reliability in network communications?

• By detecting unauthorized alterations or tampering of data.

4. What are the techniques for securing email communications?

 Encryption (e.g., PGP, S/MIME), digital signatures, and secure email protocols (e.g., SMTPS).

5. How do firewalls enhance operational security in network environments?

• By filtering network traffic based on predefined security rules and policies.

6. Explain the concept of intrusion detection systems (IDS).

• Systems that monitor network traffic for suspicious activity or policy violations.

7. What are the different types of firewalls?

 Packet filtering, stateful inspection, proxy firewalls, and next-generation firewalls.

8. How does encryption contribute to data security in network communications?

• By scrambling data into unreadable format that can only be deciphered with the correct decryption key.

9. What is the role of access control in network security?

 To restrict unauthorized access to network resources based on user credentials and policies.

10. How does network segmentation improve security posture?

 By isolating sensitive network segments from less secure areas to contain potential threats.

11. Explain the operational benefits of using VPNs for secure remote access.

 Employees can securely access corporate networks from remote locations using encrypted tunnels.

12. What are the challenges of implementing encryption in network environments?

 Key management, performance impact, and compatibility with existing systems.

13. How do digital certificates enhance authentication in network communications?

• They validate the identity of communicating parties and establish secure connections.

14. What are the advantages of using intrusion prevention systems (IPS) over IDS?

 IPS can actively block or mitigate detected threats in real-time, whereas IDS only provides alerts.

15. What are the best practices for securing wireless networks?

 Enabling encryption (e.g., WPA2), disabling SSID broadcasting, and using strong passwords.

16. How does network auditing contribute to security maintenance?

 By assessing network configurations, policies, and access controls for compliance and vulnerabilities.

17. Explain the role of security policies in maintaining network integrity.

• They define rules and guidelines for protecting network assets and responding to security incidents.

18. What are the challenges of securing IoT devices in network environments?

 Limited resources for security measures, diverse device types, and potential vulnerabilities.

19. How does penetration testing help identify network security weaknesses?

• By simulating real-world attacks to assess the effectiveness of security controls and defenses.

20. What are the considerations for implementing secure remote access solutions?

 Authentication methods, encryption protocols, and monitoring for unauthorized access attempts.